
AT90S2313

1

Features
• Utilizes the AVR ® Enhanced RISC Architecture
• 120 Powerful Instructions - Most Single Clock Cycle Execution
• 2K bytes of In-System Reprogrammable Downloadable Flash

- SPI Serial Interface for Program Downloading
- Endurance: 1,000 Write/Erase Cycles

• 128 bytes EEPROM
- Endurance: 100,000 Write/Erase Cycles

• 128 bytes Internal RAM
• 32 x 8 General Purpose Working Registers
• 15 Programmable I/O Lines
• VCC: 2.7 - 6.0V
• Fully Static Operation, 0 - 20 MHz
• Instruction Cycle Time: 50 ns @ 20 MHz
• One 8-Bit Timer/Counter with Separate Prescaler
• One 16-Bit Timer/Counter with Separate Prescaler

and Compare and Capture Modes
• Full Duplex UART
• Selectable 8, 9 or 10 bit PWM
• External and Internal Interrupt Sources
• Programmable Watchdog Timer with On-Chip Oscillator
• On-Chip Analog Comparator
• Low Power Idle and Power Down Modes
• Programming lock for Software Security
• 20-Pin Device

Description
The AT90S2313 is a low-power CMOS 8-bit microcontroller based on the AVR ®

enhanced RISC architecture. By executing powerful instructions in a single clock
cycle, the AT90S2313 achieves throughputs approaching 1 MIPS per MHz allowing
the system designer to optimize power consumption versus processing speed.

The AVR core combines a rich instruction set with 32 general purpose working regis-
ters. All the 32 registers are directly connected to the Arithmetic Logic Unit (ALU),
allowing two independent registers to be accessed in one single instruction executed
in one clock cycle. The resulting architecture is more code efficient while achieving
throughputs up to ten times faster than conventional CISC microcontrollers.

 (continued)

Pin Configuration

8-Bit
Microcontroller
with 2K bytes
Downloadable
Flash

AT90S2313
Preliminary

AT90S23132

Block Diagram

Figure 1. The AT90S2313 Block Diagram

Description (Continued)
The AT90S2313 provides the following features: 2K bytes of downloadable Flash, 128 bytes EEPROM, 128 bytes SRAM,
15 general purpose I/O lines, 32 general purpose working registers, flexible timer/counters with compare modes, internal
and external interrupts, a programmable serial UART, programmable watchdog timer with internal oscillator, an SPI serial
port for Flash memory downloading and two software selectable power saving modes. The idle mode stops the CPU while
allowing the SRAM, timer/counters, SPI port and interrupt system to continue functioning. The power down mode saves the
register contents but freezes the oscillator, disabling all other chip functions until the next interrupt or hardware reset.

The device is manufactured using Atmel’s high density non-volatile memory technology. The on-chip downloadable Flash
allows the program memory to be reprogrammed in-system through an SPI serial interface or by a conventional nonvolatile
memory programmer. By combining an enhanced RISC 8-bit CPU with downloadable Flash on a monolithic chip, the Atmel
AT90S2313 is a powerful microcontroller that provides a highly flexible and cost effective solution to many embedded con-
trol applications.

The AT90S2313 AVR is supported with a full suite of program and system development tools including: C compilers, macro
assemblers, program debugger/simulators, in-circuit emulators, and evaluation kits.

AT90S2313

3

Architectural Overview
The fast-access register file contains 32 x 8-bit general purpose working registers with a single clock cycle access time.
This means that during one single clock cycle, one ALU (Arithmetic Logic Unit) operation is executed. Two operands are
output from the register file, the operation is executed, and the result is stored back in the register file - in one clock cycle.

Six of the 32 registers can be used as three 16-bit indirect address register pointers for data space addressing - enabling
efficient address calculations. One of the three address pointers is also used as the address pointer for the constant table
look up function. These added function registers are the 16-bit X-register, Y-register and Z-register.

The ALU supports arithmetic and logic functions between registers or between a constant and a register. Single register
operations are also executed in the ALU.

In addition to the register operation, conventional memory addressing modes can be used on the register file as well. This
is enabled by the fact that the register file is assigned the 32 lowermost Data Space addresses ($00 - $1F), allowing them
to be accessed as though they were ordinary memory locations.

The I/O memory space contains 64 addresses for CPU peripheral functions as control registers, timer/counters, A/D-con-
verters, and other I/O functions. The I/O memory can be accessed directly, or as the data space locations following those of
the register file, $20 - $5F.

The AVR is a Harvard architecture - with separate memories and buses for program and data. The program memory is
accessed with a single level pipelining. While one instruction is being executed, the next instruction is pre-fetched from the
program memory. This concept enables instructions to be executed in every clock cycle. The program memory is in-system
downloadable Flash memory.

With the relative jump and call instructions, the whole 2K byte address space is directly accessed. Most AVR instructions
have a single 16-bit word format. Every program memory address contains a 16- or 32-bit instruction.

During interrupts and subroutine calls, the return address program counter (PC) is stored on the stack. The stack is effec-
tively allocated in the general data SRAM, and consequently the stack size is only limited by the total SRAM size and the
usage of the SRAM. All user programs must initialize the SP in the reset routine (before subroutines or interrupts are exe-
cuted). The 8-bit stack pointer SP is read/write accessible in the I/O space.

The 128 bytes data SRAM + register file and I/O registers can be easily accessed through the five different addressing
modes supported in the AVR architecture.

The memory spaces in the AVR architecture are all linear and regular memory maps.

A flexible interrupt module has its control registers in the I/O space with an additional global interrupt enable bit in the status
register. Each interrupt has a separate interrupt vector in the interrupt vector table at the beginning of the program memory.
Interrupts have priority in accordance with their interrupt vector position. The lower the interrupt address vector the higher
priority.

Figure 2 . Memory Maps

AT90S23134

AT90S2313 Register Summary

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page

$3F ($5F) SREG I T H S V N Z C 21
$3E ($5E) Reserved
$3D ($5D) SPL SP7 SP6 SP5 SP4 SP3 SP2 SP1 SP0 22
$3C ($5C) Reserved
$3B ($5B) GIMSK INT1 INT0 - - - - - - 27
$3A ($5A) GIFR INTF1 INTF0 27
$39 ($59) TIMSK TOIE1 OCIE1A - - TICIE1 - TOIE0 - 27
$38 ($58) TIFR TOV1 OCF1A - - ICF1 - TOV0 - 28
$37 ($57) Reserved
$36 ($56) Reserved
$35 ($55) MCUCR - - SE SM ISC11 ISC10 ISC01 ISC00 29
$34 ($54) Reserved
$33 ($53) TCCR0 - - - - - CS02 CS01 CS00 32
$32 ($52) TCNT0 Timer/Counter0 (8 Bit) 33
$31 ($51) Reserved
$30 ($50) Reserved
$2F ($4F) TCCR1A COM1A1 COM1A0 - - - - PWM11 PWM10 35
$2E ($4E) TCCR1B ICNC1 ICES1 . - CTC1 CS12 CS11 CS10 35
$2D ($4D) TCNT1H Timer/Counter1 - Counter Register High Byte 36
$2C ($4C) TCNT1L Timer/Counter1 - Counter Register Low Byte 36
$2B ($4B) OCR1AH Timer/Counter1 - Compare Register High Byte 37
$2A ($4A) OCR1AL Timer/Counter1 - Compare Register Low Byte 37
$29 ($49) Reserved
$28 ($48) Reserved
$27 ($47) Reserved
$26 ($46) Reserved
$25 ($45) ICR1H Timer/Counter1 - Input Capture Register High Byte 37
$24 ($44) ICR1L Timer/Counter1 - Input Capture Register Low Byte 37
$23 ($43) Reserved
$22 ($42) Reserved
$21 ($41) WDTCR - - - WDTOE WDE WDP2 WDP1 WDP0 39
$20 ($40) Reserved
$1F ($3F) Reserved
$1E ($3E) EEAR - EEPROM Address Register 40
$1D ($3D) EEDR EEPROM Data register 41
$1C ($3C) EECR - - - - - EEMWE EEWE EERE 41
$1B ($3B) Reserved
$1A ($3A) Reserved
$19 ($39) Reserved
$18 ($38) PORTB PORTB7 PORTB6 PORTB5 PORTB4 PORTB3 PORTB2 PORTB1 PORTB0 50
$17 ($37) DDRB DDB7 DDB6 DDB5 DDB4 DDB3 DDB2 DDB1 DDB0 50
$16 ($36) PINB PINB7 PINB6 PINB5 PINB4 PINB3 PINB2 PINB1 PINB0 50
$15 ($35) Reserved
$14 ($34) Reserved
$13 ($33) Reserved
$12 ($32) PORTD - PORTD6 PORTD5 PORTD4 PORTD3 PORTD2 PORTD1 PORTD0 55
$11 ($31) DDRD - DDD6 DDD5 DDD4 DDD3 DDD2 DDD1 DDD0 55
$10 ($30) PIND - PIND6 PIND5 PIND4 PIND3 PIND2 PIND1 PIND0 55
$0F ($2F) Reserved
$0E ($2E) Reserved
$0D ($2D) Reserved
$0C ($2C) UDR UART I/O Data Register 44
$0B ($2B) USR RXC TXC UDRE FE OR - - - 44
$0A ($2A) UCR RXCIE TXCIE UDRIE RXEN TXEN CHR9 RXB8 TXB8 45
$09 ($29) UBRR UART Baud Rate Register 47
$08 ($28) ACSR ACD - ACO ACI ACIE ACIC ACIS1 ACIS0 48

… Reserved
$00 ($20) Reserved

AT90S2313

5

AT90S2313 Instruction Set Summary

(continued)

Mnemonics Operands Description Operation Flags #Clocks
ARITHMETIC AND LOGIC INSTRUCTIONS
ADD Rd, Rr Add two Registers Rd ← Rd + Rr Z,C,N,V,H 1
ADC Rd, Rr Add with Carry two Registers Rd ← Rd + Rr + C Z,C,N,V,H 1
ADIW Rdl,K Add Immediate to Word Rdh:Rdl ← Rdh:Rdl + K Z,C,N,V,S 2
SUB Rd, Rr Subtract two Registers Rd ← Rd − Rr Z,C,N,V,H 1
SUBI Rd, K Subtract Constant from Register Rd ← Rd − K Z,C,N,V,H 1
SBIW Rdl,K Subtract Immediate from Word Rdh:Rdl ← Rdh:Rdl − K Z,C,N,V,S 2
SBC Rd, Rr Subtract with Carry two Registers Rd ← Rd − Rr − C Z,C,N,V,H 1
SBCI Rd, K Subtract with Carry Constant from Reg. Rd ← Rd − K − C Z,C,N,V,H 1
AND Rd, Rr Logical AND Registers Rd ← Rd • Rr Z,N,V 1
ANDI Rd, K Logical AND Register and Constant Rd ← Rd • K Z,N,V 1
OR Rd, Rr Logical OR Registers Rd ← Rd v Rr Z,N,V 1
ORI Rd, K Logical OR Register and Constant Rd ← Rd v K Z,N,V 1
EOR Rd, Rr Exclusive OR Registers Rd ← Rd ⊕ Rr Z,N,V 1
COM Rd One’s Complement Rd ← $FF − Rd Z,C,N,V 1
NEG Rd Two’s Complement Rd ← $00 − Rd Z,C,N,V,H 1
SBR Rd,K Set Bit(s) in Register Rd ← Rd v K Z,N,V 1
CBR Rd,K Clear Bit(s) in Register Rd ← Rd • ($FF − K) Z,N,V 1
INC Rd Increment Rd ← Rd + 1 Z,N,V 1
DEC Rd Decrement Rd ← Rd − 1 Z,N,V 1
TST Rd Test for Zero or Minus Rd ← Rd • Rd Z,N,V 1
CLR Rd Clear Register Rd ← Rd ⊕ Rd Z,N,V 1
SER Rd Set Register Rd ← $FF None 1
BRANCH INSTRUCTIONS
RJMP k Relative Jump PC ← PC + k + 1 None 2
IJMP Indirect Jump to (Z) PC ← Z None 2
RCALL k Relative Subroutine Call PC ← PC + k + 1 None 3
ICALL Indirect Call to (Z) PC ← Z None 3
RET Subroutine Return PC ← STACK None 4
RETI Interrupt Return PC ← STACK I 4
CPSE Rd,Rr Compare, Skip if Equal if (Rd = Rr) PC ← PC + 2 or 3 None 1 / 2
CP Rd,Rr Compare Rd − Rr Z, N,V,C,H 1
CPC Rd,Rr Compare with Carry Rd − Rr − C Z, N,V,C,H 1
CPI Rd,K Compare Register with Immediate Rd − K Z, N,V,C,H 1
SBRC Rr, b Skip if Bit in Register Cleared if (Rr(b)=0) PC ← PC + 2 or 3 None 1 / 2
SBRS Rr, b Skip if Bit in Register is Set if (Rr(b)=1) PC ← PC + 2 or 3 None 1 / 2
SBIC P, b Skip if Bit in I/O Register Cleared if (P(b)=0) PC ← PC + 2 or 3 None 1 / 2
SBIS P, b Skip if Bit in I/O Register is Set if (R(b)=1) PC ← PC + 2 or 3 None 1 / 2
BRBS s, k Branch if Status Flag Set if (SREG(s) = 1) then PC←PC + k + 1 None 1 / 2
BRBC s, k Branch if Status Flag Cleared if (SREG(s) = 0) then PC←PC + k + 1 None 1 / 2
BREQ k Branch if Equal if (Z = 1) then PC ← PC + k + 1 None 1 / 2
BRNE k Branch if Not Equal if (Z = 0) then PC ← PC + k + 1 None 1 / 2
BRCS k Branch if Carry Set if (C = 1) then PC ← PC + k + 1 None 1 / 2
BRCC k Branch if Carry Cleared if (C = 0) then PC ← PC + k + 1 None 1 / 2
BRSH k Branch if Same or Higher if (C = 0) then PC ← PC + k + 1 None 1 / 2
BRLO k Branch if Lower if (C = 1) then PC ← PC + k + 1 None 1 / 2
BRMI k Branch if Minus if (N = 1) then PC ← PC + k + 1 None 1 / 2
BRPL k Branch if Plus if (N = 0) then PC ← PC + k + 1 None 1 / 2
BRGE k Branch if Greater or Equal, Signed if (N ⊕ V= 0) then PC ← PC + k + 1 None 1 / 2
BRLT k Branch if Less Than Zero, Signed if (N ⊕ V= 1) then PC ← PC + k + 1 None 1 / 2
BRHS k Branch if Half Carry Flag Set if (H = 1) then PC ← PC + k + 1 None 1 / 2
BRHC k Branch if Half Carry Flag Cleared if (H = 0) then PC ← PC + k + 1 None 1 / 2
BRTS k Branch if T Flag Set if (T = 1) then PC ← PC + k + 1 None 1 / 2
BRTC k Branch if T Flag Cleared if (T = 0) then PC ← PC + k + 1 None 1 / 2
BRVS k Branch if Overflow Flag is Set if (V = 1) then PC ← PC + k + 1 None 1 / 2
BRVC k Branch if Overflow Flag is Cleared if (V = 0) then PC ← PC + k + 1 None 1 / 2
BRIE k Branch if Interrupt Enabled if (I = 1) then PC ← PC + k + 1 None 1 / 2
BRID k Branch if Interrupt Disabled if (I = 0) then PC ← PC + k + 1 None 1 / 2

AT90S23136

Mnemonics Operands Description Operation Flags #Clocks
DATA TRANSFER INSTRUCTIONS
MOV Rd, Rr Move Between Registers Rd ← Rr None 1
LDI Rd, K Load Immediate Rd ← K None 1
LD Rd, X Load Indirect Rd ← (X) None 2
LD Rd, X+ Load Indirect and Post-Inc. Rd ← (X), X ← X + 1 None 2
LD Rd, - X Load Indirect and Pre-Dec. X ← X − 1, Rd ← (X) None 2
LD Rd, Y Load Indirect Rd ← (Y) None 2
LD Rd, Y+ Load Indirect and Post-Inc. Rd ← (Y), Y ← Y + 1 None 2
LD Rd, - Y Load Indirect and Pre-Dec. Y ← Y − 1, Rd ← (Y) None 2
LDD Rd,Y+q Load Indirect with Displacement Rd ← (Y + q) None 2
LD Rd, Z Load Indirect Rd ← (Z) None 2
LD Rd, Z+ Load Indirect and Post-Inc. Rd ← (Z), Z ← Z+1 None 2
LD Rd, -Z Load Indirect and Pre-Dec. Z ← Z - 1, Rd ← (Z) None 2
LDD Rd, Z+q Load Indirect with Displacement Rd ← (Z + q) None 2
LDS Rd, k Load Direct from SRAM Rd ← (k) None 3
ST X, Rr Store Indirect (X) ← Rr None 2
ST X+, Rr Store Indirect and Post-Inc. (X) ← Rr, X ← X + 1 None 2
ST - X, Rr Store Indirect and Pre-Dec. X ← X - 1, (X) ← Rr None 2
ST Y, Rr Store Indirect (Y) ← Rr None 2
ST Y+, Rr Store Indirect and Post-Inc. (Y) ← Rr, Y ← Y + 1 None 2
ST - Y, Rr Store Indirect and Pre-Dec. Y ← Y - 1, (Y) ← Rr None 2
STD Y+q,Rr Store Indirect with Displacement (Y + q) ← Rr None 2
ST Z, Rr Store Indirect (Z) ← Rr None 2
ST Z+, Rr Store Indirect and Post-Inc. (Z) ← Rr, Z ← Z + 1 None 2
ST -Z, Rr Store Indirect and Pre-Dec. Z ← Z - 1, (Z) ← Rr None 2
STD Z+q,Rr Store Indirect with Displacement (Z + q) ← Rr None 2
STS k, Rr Store Direct to SRAM (k) ← Rr None 3
LPM Load Program Memory R0 ← (Z) None 3
IN Rd, P In Port Rd ← P None 1
OUT P, Rr Out Port P ← Rr None 1
PUSH Rr Push Register on Stack STACK ← Rr None 2
POP Rd Pop Register from Stack Rd ← STACK None 2
BIT AND BIT-TEST INSTRUCTIONS
SBI P,b Set Bit in I/O Register I/O(P,b) ← 1 None 2
CBI P,b Clear Bit in I/O Register I/O(P,b) ← 0 None 2
LSL Rd Logical Shift Left Rd(n+1) ← Rd(n), Rd(0) ← 0 Z,C,N,V 1
LSR Rd Logical Shift Right Rd(n) ← Rd(n+1), Rd(7) ← 0 Z,C,N,V 1
ROL Rd Rotate Left Through Carry Rd(0)←C,Rd(n+1)← Rd(n),C←Rd(7) Z,C,N,V 1
ROR Rd Rotate Right Through Carry Rd(7)←C,Rd(n)← Rd(n+1),C←Rd(0) Z,C,N,V 1
ASR Rd Arithmetic Shift Right Rd(n) ← Rd(n+1), n=0..6 Z,C,N,V 1
SWAP Rd Swap Nibbles Rd(3..0)←Rd(7..4),Rd(7..4)←Rd(3..0) None 1
BSET s Flag Set SREG(s) ← 1 SREG(s) 1
BCLR s Flag Clear SREG(s) ← 0 SREG(s) 1
BST Rr, b Bit Store from Register to T T ← Rr(b) T 1
BLD Rd, b Bit load from T to Register Rd(b) ← T None 1
SEC Set Carry C ← 1 C 1
CLC Clear Carry C ← 0 C 1
SEN Set Negative Flag N ← 1 N 1
CLN Clear Negative Flag N ← 0 N 1
SEZ Set Zero Flag Z ← 1 Z 1
CLZ Clear Zero Flag Z ← 0 Z 1
SEI Global Interrupt Enable I ← 1 I 1
CLI Global Interrupt Disable I ← 0 I 1
SES Set Signed Test Flag S ← 1 S 1
CLS Clear Signed Test Flag S ← 0 S 1
SEV Set Twos Complement Overflow V ← 1 V 1
CLV Clear Twos Complement Overflow V ← 0 V 1
SET Set T in SREG T ← 1 T 1
CLT Clear T in SREG T ← 0 T 1
SEH Set Half Carry Flag in SREG H ← 1 H 1
CLH Clear Half Carry Flag in SREG H ← 0 H 1
NOP No Operation None 1
SLEEP Sleep (see specific descr. for Sleep function) None 3
WDR Watchdog Reset (see specific descr. for WDR/timer) None 1

