
AT90S1200

1

Features
• Utilizes the AVR ® Enhanced RISC Architecture
• 89 Powerful Instructions - Most Single Clock Cycle Execution
• 1K bytes of In-System Reprogrammable Downloadable Flash

- SPI Serial Interface for Program Downloading
- Endurance: 1,000 Write/Erase Cycles

• 64 bytes EEPROM
- Endurance: 100,000 Write/Erase Cycles

• 32 x 8 General Purpose Working Registers
• 15 Programmable I/O Lines
• VCC: 2.7 - 6.0V
• Fully Static Operation, 0 - 16 MHz
• Instruction Cycle Time: 62.5 ns @ 16 MHz
• One 8-Bit Timer/Counter with Separate Prescaler
• External and Internal Interrupt Sources
• Programmable Watchdog Timer with On-Chip Oscillator
• On-Chip Analog Comparator
• Low Power Idle and Power Down Modes
• Programming Lock for Software Security
• 20-Pin Device
• Selectable On-Chip RC Oscillator for Zero External Components

Description
The AT90S1200 is a low-power CMOS 8-bit microcontroller based on the AVR®

enhanced RISC architecture. By executing powerful instructions in a single clock
cycle, the AT90S1200 achieves throughputs approaching 1 MIPS per MHz allowing
the system designer to optimize power consumption versus processing speed.

The AVR core combines a rich instruction set with the 32 general purpose working
registers. All the 32 registers are directly connected to the Arithmetic Logic Unit (ALU),
allowing two independent registers to be accessed in one single instruction executed
in one clock cycle. The resulting architecture is more code efficient while achieving
throughputs up to ten times faster than conventional CISC microcontrollers.

(continued)

Pin Configuration

8-Bit
Microcontroller
with 1K bytes
Downloadable
Flash

AT90S1200

AT90S12002

Block Diagram

Figure 1. The AT90S1200 Block Diagram

AT90S1200

3

Description (Continued)
The architecture supports extremely dense assembler code programs. The AT90S1200 provides the following features: 1K
bytes of downloadable Flash, 64 bytes EEPROM, 15 general purpose I/O lines, 32 general purpose working registers,
internal and external interrupts, programmable watchdog timer with internal oscillator, an SPI serial port for program down-
loading and two software selectable power saving modes. The idle mode stops the CPU while allowing the registers, timer/
counter, watchdog and interrupt system to continue functioning. The power down mode saves the register contents but
freezes the oscillator, disabling all other chip functions until the next external interrupt or hardware reset.

The device is manufactured using Atmel’s high density non-volatile memory technology. The on-chip downloadable Flash
allows the program memory to be reprogrammed in-system through an SPI serial interface or by a conventional nonvolatile
memory programmer. By combining an enhanced RISC 8-bit CPU with downloadable Flash on a monolithic chip, the Atmel
AT90S1200 is a powerful microcontroller that provides a highly flexible and cost effective solution to many embedded con-
trol applications.

The AT90S1200 AVR is supported with a full suite of program and system development tools including: macro assemblers,
program debugger/simulators, in-circuit emulators, and evaluation kits.

On-Chip RC Oscillator
An on-chip RC oscillator running at a fixed frequency of 1 MHz can be selected as the MCU clock source. If enabled, the
AT90S1200 can operate with no external components. A control bit - RCEN in the Flash Memory selects the on-chip RC
oscillator as the clock source when programmed (‘0’).

Architectural Overview
The fast-access register file contains 32 x 8-bit general purpose working registers with a single clock cycle access time.
This means that during one single clock cycle, one ALU (Arithmetic Logic Unit) operation is executed. Two operands are
output from the register file, the operation is executed, and the result is stored back in the register file - in one clock cycle.

The ALU supports arithmetic and logic functions between registers or between a constant and a register. Single register
operations are also executed in the ALU. The AVR is a Harvard architecture - with separate memories and buses for pro-
gram and data memories. The program memory is accessed with single level pipelining. While one instruction is being exe-
cuted, the next instruction is pre-fetched from the program memory. This concept enables instructions to be executed in
every clock cycle. The program memory is in-system downloadable Flash memory.

With the relative jump and relative call instructions, the whole 1K byte address space is directly accessed. All AT90S1200
instructions have a single 16-bit word format, meaning that every program memory address contains a single 16-bit instruc-
tion.

During interrupts and subroutine calls, the return address program counter (PC) is stored on the stack. The stack is a 3
level deep hardware stack dedicated for subroutines and interrupts.

The I/O memory space contains 64 addresses for CPU peripheral functions as Control Registers, Timer/Counters, A/D-
converters, and other I/O functions. The memory spaces in the AVR architecture are all linear and regular memory maps.

A flexible interrupt module has its control registers in the I/O space with an additional global interrupt enable bit in the status
register. Each interrupt has a separate interrupt vector in the interrupt vector table at the beginning of the program memory.
Interrupts have priority in accordance with their interrupt vector position. The lower the interrupt address vector the higher
priority.

AT90S12004

AT90S1200 Register Summary

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page

$3F SREG I T H S V N Z C 12
$3E Reserved
$3D Reserved
$3C Reserved
$3B GIMSK - INT0 - - - - - - 17
$3A Reserved
$39 TIMSK - - - - - - TOIE0 - 18
$38 TIFR - - - - - - TOV0 - 18
$37 Reserved
$36 Reserved
$35 MCUCR - - SE SM - - ISC01 ISC00 19
$34 Reserved
$33 TCCR0 - - - - - CS02 CS01 CS00 21
$32 TCNT0 Timer/Counter0 (8 Bit) 22
$31 Reserved
$30 Reserved
$2F Reserved
$2E Reserved
$2D Reserved
$2C Reserved
$2B Reserved
$2A Reserved
$29 Reserved
$28 Reserved
$27 Reserved
$26 Reserved
$25 Reserved
$24 Reserved
$23 Reserved
$22 Reserved
$21 WDTCR - - - - WDE WDP2 WDP1 WDP0 23
$20 Reserved
$1F Reserved
$1E EEAR - EEPROM Address Register 24
$1D EEDR EEPROM Data Register 24
$1C EECR - - - - - - EEWE EERE 24
$1B Reserved
$1A Reserved
$19 Reserved
$18 PORTB PORTB7 PORTB6 PORTB5 PORTB4 PORTB3 PORTB2 PORTB1 PORTB0 26
$17 DDRB DDB7 DDB6 DDB5 DDB4 DDB3 DDB2 DDB1 DDB0 27
$16 PINB PINB7 PINB6 PINB5 PINB4 PINB3 PINB2 PINB1 PINB0 27
$15 Reserved
$14 Reserved
$13 Reserved
$12 PORTD - PORTD6 PORTD5 PORTD4 PORTD3 PORTD2 PORTD1 PORTD0 31
$11 DDRD - DDD6 DDD5 DDD4 DDD3 DDD2 DDD1 DDD0 31
$10 PIND - PIND6 PIND5 PIND4 PIND3 PIND2 PIND1 PIND0 31
$0F Reserved
$0E Reserved
$0D Reserved
$0C Reserved
$0B Reserved
$0A Reserved
$09 Reserved
$08 ACSR ACD - ACO ACI ACIE - ACIS1 ACIS0 25
… Reserved

$00 Reserved

AT90S1200

5

AT90S1200 Instruction Set Summary

(continued)

Mnemonic Operands Description Operation Flags #Clocks
ARITHMETIC AND LOGIC INSTRUCTIONS
ADD Rd, Rr Add two Registers Rd ← Rd + Rr Z,C,N,V,H 1
ADC Rd, Rr Add with Carry two Registers Rd ← Rd + Rr + C Z,C,N,V,H 1
SUB Rd, Rr Subtract two Registers Rd ← Rd - Rr Z,C,N,V,H 1
SUBI Rd, K Subtract Constant from Register Rd ← Rd - K Z,C,N,V,H 1
SBC Rd, Rr Subtract with Carry two Registers Rd ← Rd - Rr - C Z,C,N,V,H 1
SBCI Rd, K Subtract with Carry Constant from Reg. Rd ← Rd - K - C Z,C,N,V,H 1
AND Rd, Rr Logical AND Registers Rd ← Rd • Rr Z,N,V 1
ANDI Rd, K Logical AND Register and Constant Rd ← Rd • K Z,N,V 1
OR Rd, Rr Logical OR Registers Rd ← Rd v Rr Z,N,V 1
ORI Rd, K Logical OR Register and Constant Rd ← Rd v K Z,N,V 1
EOR Rd, Rr Exclusive OR Registers Rd ← Rd⊕Rr Z,N,V 1
COM Rd One’s Complement Rd ← $FF - Rd Z,C,N,V 1
NEG Rd Two’s Complement Rd ← $00 - Rd Z,C,N,V,H 1
SBR Rd,K Set Bit(s) in Register Rd ← Rd v K Z,N,V 1
CBR Rd,K Clear Bit(s) in Register Rd ← Rd • (FFh - K) Z,N,V 1
INC Rd Increment Rd ← Rd + 1 Z,N,V 1
DEC Rd Decrement Rd ← Rd - 1 Z,N,V 1
TST Rd Test for Zero or Minus Rd ← Rd • Rd Z,N,V 1
CLR Rd Clear Register Rd ← Rd⊕Rd Z,N,V 1
SER Rd Set Register Rd ← $FF None 1
BRANCH INSTRUCTIONS
RJMP k Relative Jump PC ← PC + k + 1 None 2
RCALL k Relative Subroutine Call PC ← PC + k + 1 None 3
RET Subroutine Return PC ← STACK None 4
RETI Interrupt Return PC ← STACK I 4
CPSE Rd,Rr Compare, Skip if Equal if (Rd = Rr) PC ← PC + 2 or 3 None 1 / 2
CP Rd,Rr Compare Rd - Rr Z, N,V,C,H 1
CPC Rd,Rr Compare with Carry Rd - Rr - C Z, N,V,C,H 1
CPI Rd,K Compare Register with Immediate Rd - K Z, N,V,C,H 1
SBRC Rr, b Skip if Bit in Register Cleared if (Rr(b)=0) PC ← PC + 2 or 3 None 1 / 2
SBRS Rr, b Skip if Bit in Register is Set if (Rr(b)=1) PC ← PC + 2 or 3 None 1 / 2
SBIC P, b Skip if Bit in I/O Register Cleared if (P(b)=0) PC ← PC + 2 or 3 None 1 / 2
SBIS P, b Skip if Bit in I/O Register is Set if (P(b)=1) PC ← PC + 2 or 3 None 1 / 2
BRBS s, k Branch if Status Flag Set if (SREG(s) = 1) then PC←PC + k + 1 None 1 / 2
BRBC s, k Branch if Status Flag Cleared if (SREG(s) = 0) then PC←PC + k + 1 None 1 / 2
BREQ k Branch if Equal if (Z = 1) then PC ← PC + k + 1 None 1 / 2
BRNE k Branch if Not Equal if (Z = 0) then PC ← PC + k + 1 None 1 / 2
BRCS k Branch if Carry Set if (C = 1) then PC ← PC + k + 1 None 1 / 2
BRCC k Branch if Carry Cleared if (C = 0) then PC ← PC + k + 1 None 1 / 2
BRSH k Branch if Same or Higher if (C = 0) then PC ← PC + k + 1 None 1 / 2
BRLO k Branch if Lower if (C = 1) then PC ← PC + k + 1 None 1 / 2
BRMI k Branch if Minus if (N = 1) then PC ← PC + k + 1 None 1 / 2
BRPL k Branch if Plus if (N = 0) then PC ← PC + k + 1 None 1 / 2
BRGE k Branch if Greater or Equal, Signed if (N ⊕ V= 0) then PC ← PC + k + 1 None 1 / 2
BRLT k Branch if Less Than Zero, Signed if (N ⊕ V= 1) then PC ← PC + k + 1 None 1 / 2
BRHS k Branch if Half Carry Flag Set if (H = 1) then PC ← PC + k + 1 None 1 / 2
BRHC k Branch if Half Carry Flag Cleared if (H = 0) then PC ← PC + k + 1 None 1 / 2
BRTS k Branch if T Flag Set if (T = 1) then PC ← PC + k + 1 None 1 / 2
BRTC k Branch if T Flag Cleared if (T = 0) then PC ← PC + k + 1 None 1 / 2
BRVS k Branch if Overflow Flag is Set if (V = 1) then PC ← PC + k + 1 None 1 / 2
BRVC k Branch if Overflow Flag is Cleared if (V = 0) then PC ← PC + k + 1 None 1 / 2
BRIE k Branch if Interrupt Enabled if (I = 1) then PC ← PC + k + 1 None 1 / 2
BRID k Branch if Interrupt Disabled if (I = 0) then PC ← PC + k + 1 None 1 / 2

AT90S12006

AT90S1200 Instruction Set Summary (Continued)

Mnemonic Operands Description Operation Flags #Clocks
DATA TRANSFER INSTRUCTIONS
LD Rd,Z Load Register Indirect Rd ← (Z) None 2
ST Z,Rr Store Register Indirect (Z) ← Rr None 2
MOV Rd, Rr Move Between Registers Rd ← Rr None 1
LDI Rd, K Load Immediate Rd ← K None 1
IN Rd, P In Port Rd ← P None 1
OUT P, Rr Out Port P ← Rr None 1
BIT AND BIT-TEST INSTRUCTIONS
SBI P,b Set Bit in I/O Register I/O(P,b) ← 1 None 2
CBI P,b Clear Bit in I/O Register I/O(P,b) ← 0 None 2
LSL Rd Logical Shift Left Rd(n+1) ← Rd(n), Rd(0) ← 0 Z,C,N,V 1
LSR Rd Logical Shift Right Rd(n) ← Rd(n+1), Rd(7) ← 0 Z,C,N,V 1
ROL Rd Rotate Left Through Carry Rd(0)←C,Rd(n+1)← Rd(n),C←Rd(7) Z,C,N,V 1
ROR Rd Rotate Right Through Carry Rd(7)←C,Rd(n)← Rd(n+1),C←Rd(0) Z,C,N,V 1
ASR Rd Arithmetic Shift Right Rd(n) ← Rd(n+1), n=0..6 Z,C,N,V 1
SWAP Rd Swap Nibbles Rd(3..0)←Rd(7..4),Rd(7..4)←Rd(3..0) None 1
BSET s Flag Set SREG(s) ← 1 SREG(s) 1
BCLR s Flag Clear SREG(s) ← 0 SREG(s) 1
BST Rr, b Bit Store from Register to T T ← Rr(b) T 1
BLD Rd, b Bit load from T to Register Rd(b) ← T None 1
SEC Set Carry C ← 1 C 1
CLC Clear Carry C ← 0 C 1
SEN Set Negative Flag N ← 1 N 1
CLN Clear Negative Flag N ← 0 N 1
SEZ Set Zero Flag Z ← 1 Z 1
CLZ Clear Zero Flag Z ← 0 Z 1
SEI Global Interrupt Enable I ← 1 I 1
CLI Global Interrupt Disable I ← 0 I 1
SES Set Signed Test Flag S ← 1 S 1
CLS Clear Signed Test Flag S ← 0 S 1
SEV Set Twos Complement Overflow V ← 1 V 1
CLV Clear Twos Complement Overflow V ← 0 V 1
SET Set T in SREG T ← 1 T 1
CLT Clear T in SREG T ← 0 T 1
SEH Set Half Carry Flag in SREG H ← 1 H 1
CLH Clear Half Carry Flag in SREG H ← 0 H 1
NOP No Operation None 1
SLEEP Sleep (see specific descr. for Sleep function) None 3
WDR Watch Dog Reset (see specific descr. for WDR/timer) None 1

